Dienstag, 17. Dezember 2013

Ein-Atom-Bit bildet kleinsten Speicher der Welt





Bildlegende: Mittels eines Rastertunnelmikroskops werden einzelne Holmiumatome auf einer Platinoberfläche sichtbar (Bild: KIT/T. Miyamachi)


    Ein Atom ist ein Bit: Nach diesem Bauprinzip würde man die magnetischen Datenspeicher der Zukunft gerne aufbauen. Heutzutage braucht man einen Verbund von mehreren Millionen Atomen, damit ein magnetisches Bit so stabil ist, dass Festplattendaten über Jahre sicher sind. Nun konnten Forscher des KIT einen grossen Schritt in Richtung Ein-Atom-Bit machen: Sie haben ein einzelnes Atom auf einer Oberfläche so fixiert, dass der magnetische Spin über 10 Minuten stabil blieb, wie sie in der aktuellen Ausgabe des Fachmagazins Nature berichten. (DOI 10.1038/nature12759)

    „Ein einzelnes Atom, fixiert auf einer Unterlage, ist meist so empfindlich, dass es nur Bruchteile einer Mikrosekunde (200 Nanosekunden) seine magnetische Ausrichtung beibehält“, erklärt Wulf Wulfhekel vom Karlsruher Institut für Technologie. „Dies öffnet nicht nur das Tor zu dichteren Computerspeichern, sondern könnte auch für den Aufbau von Quantencomputern einen Grundstein legen“, so Wulfhekel. Quantencomputer basieren auf den quantenphysikalischen Eigenschaften von atomaren Systemen und könnten zumindest in der Theorie einen exponentiellen Geschwindigkeitsvorteil gegenüber klassischen Computern besitzen.


    In dem aktuellen Experiment setzten die Forscher ein einzelnes Holmium- Atom auf eine Platinunterlage. Bei Temperaturen nahe am absoluten Nullpunkt, bei circa 1 Grad Kelvin, vermassen sie die magnetische Ausrichtung des Atoms mittels der feinen Spitze eines Rastertunnelmikroskops. Der magnetische Spin sprang erst nach circa zehn Minuten um. „Das System hält seinen einmal eingestellten magnetischen Spin somit rund eine Milliarde mal länger als vergleichbare atomare Systeme“, so Wulfhekel. Für das Experiment wurde ein neuartiges Rastertunnelmikroskop des KIT genutzt. Dank einer speziellen Kühlung für den Temperaturbereich nahe dem absoluten Nullpunkt ist es vibrationsarm und erlaubt lange Messzeiten.

    Um die Spin-Umklapp-Zeiten zu verlängern, wurde der störenden Einfluss der Umgebung für das Atom ausgeblendet. Normalerweise stossen die Elektronen der Unterlage und des Atoms  rege quantenmechanisch miteinander und destabilisieren den Spin des Atoms in Mikrosekunden oder schneller aus dem Grundzustand. Im Fall von Holmium und Platin bei tiefen Temperaturen werden störende Wechselwirkungen durch die Symmetrieeigenschaften des vorliegenden Quantensystems ausgeschaltet. Mittels externer Magnetfelder liessen sich der Spin des Holmiums aber noch einstellen und so Informationen schreiben. Damit wären die Grundlagen für die Entwicklung kompakter Datenspeicher oder Quantencomputer gelegt.

Keine Kommentare:

Kommentar veröffentlichen